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a r t i c l e i n f o

Article history:

Received 17 April 2012

Received in revised form

18 June 2012

Accepted 25 June 2012
Available online 29 June 2012

Keywords:

Process analytical techniques(PAT)

Partial least squares (PLS) regression

Attenuated total reflectance (ATR)

Quantitative determination of sugars

Depilatory/depilatories

Cubic smoothing splines background

correction (CSS-BGC)
40/$ - see front matter & 2012 Elsevier B.V. A

x.doi.org/10.1016/j.talanta.2012.06.072

esponding author. Tel.: þ34 96 354 4838; fax

ail address: miguel.delaguardia@uv.es (M. de
a b s t r a c t

A fast, reliable and economical methodology has been developed to control the production process of

sugar-based depilatories. The method is based on the use of attenuated total reflectance—Fourier

transform infrared (ATR-FTIR) spectroscopy in combination with multivariate data analysis. A very

simple sample preparation process involving the dissolution of samples in water was applied.

Employing a multivariate calibration model established from data of 15 well characterized samples,

prediction errors equal or below 3.04 mg mL�1 for the quantitative determination of fructose, glucose,

sucrose, maltose and maltotriose were obtained. Results found in this preliminary study indicate a

great potential for the development of at-line ATR-FTIR-PLS methods based on a careful selection of

variables from IR spectra, delivering fast and reliable results. As a reference method, a liquid

chromatography (LC)–IR method was adapted for sample characterization.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Process analytical technology (PAT) continues to be an evol-
ving field across several industrial sectors reflected by an on-
going interest in the development and implementation of new
analytical tools and methods. Frequently the evaluation of pro-
duct quality is accomplished by analyzing randomly collected
samples obtained from batch processing, employing time-con-
suming off-line laboratory techniques. This lack of understanding
of the process itself hampers effective process control and can
result in batch losses. In accordance, the objective of PAT is to
enhance understanding and control a manufacturing process
following quality-by-design principles, to reduce identified man-
ufacturing risks that are associated with product quality. It should
therefore play a crucial role in design, analysis and control of
manufacturing processes based on measurements of critical
performance attributes [1–3].

Concerning available analytical tools, modern technologies
providing multivariate information related to biological and
chemical parameters have evolved from those that predominantly
take univariate process measurements, such as temperature, pH
and pressure. In the last decade, vibrational spectroscopy has been
increasingly used for process control and monitoring in many
ll rights reserved.

: þ34 96 354 4845.
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different fields including the monitoring of pharmaceutical [4,5]
and bio-processes [6]. The huge number of methods based on
different spectroscopic techniques such as mid-infrared (MIR),
near infrared (NIR) and Raman spectroscopy can be attributed
to their characteristics that make them well-suited for process
control and monitoring tasks combining several key-features. In
general, spectroscopic methods are able to provide quantitative
and qualitative multi-analyte information being at the same time
extremely versatile as they allow the measurement of gaseous,
liquid and solid samples. Further remarkable aspects that favor the
implementation of spectroscopic techniques are that measure-
ments are usually non-destructive and sometimes even non-
invasive. The set-ups are robust and economic and ideally allow
the implementation of automated data acquisition in real-time
measurements. Instrumentation technology for process analytical
applications can avoid the deleterious side effects of traditional
methods involving an intensive sample preparation and, because
of that green analytical procedures have been replacing other
PAT [7,8].

Due to the frequent use of vibrational spectroscopic process
analyzers and their ability to supply multivariate information,
there is a growing need for chemometric methods. Currently, all
kinds of multivariate regression and classification models find
their application in (bio-)process monitoring [1,8–10] and meth-
ods are constantly developed to improve results [11].

Although similar from the viewpoint of an analytical chemist,
in contrast to the pharmaceutical sector, PAT still plays a limited
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role in the production of cosmetics. Usually, only final products
are analyzed employing standard laboratory techniques to ensure
consumer safety according to the EU legislation on cosmetic
products [12–14]. On the other hand, IR spectroscopy is known
to be a valuable tool for the determination of glucose in complex
samples like blood and urine [15]. Furthermore recently a method
for the direct determination of fructose, glucose, sucrose and
maltose in sugar based depilatories employing ATR (attenuated
total reflectance)-FTIR spectra was developed as an alternative to
solvent and time-consuming chromatographic methods [16].
Surprisingly, in this study the absence of sucrose in all tested
commercial samples was evidenced in spite of the information on
components provided by the manufacturers. In fact, sucrose was
added during the production process, but due to heating of the
primary matter under acidic conditions, a cleavage of sucrose into
fructose and glucose was suspected. Moreover maltose was
detected in all analyzed samples although apparently no maltose
was added during production, which raised the suspicion that
glucose syrup instead of crystalline glucose was added.

Based on the foregoing study, in the present study the
previously developed liquid chromatography (LC)-IR method
was adapted to analyze samples withdrawn at different stages
of the production process to gain a deeper insight into changes of
raw materials occurring during the production. After sample
characterization a direct, green ATR-FTIR method for the simulta-
neous determination of all sugars present during the batch
production process of depilatories was developed as a preliminary
study for its implementation as at-line PAT.
2. Material and methods

2.1. Standards and samples

D(�)-fructose, anhydrous D(þ)-glucose and maltose-1-
hydrate from Panreac (Barcelona, Spain), D(þ)-sucrose from
Scharlau (Barcelona, Spain) and maltotriose hydrate 95% from
Aldrich (Saint Louis, MO, USA) were used as standards. Acetonitrile
(HPLC grade) was purchased also from Scharlau and high-purity
water, with a resistivity higher than 18.2 MO, was obtained from a
Milli-Q water-purification system (Bedford, MA, USA). Ten differ-
ent stages of the batch process were considered, characterized by
the addition of sugars and perfume and a temperature program.
Aliquots of approximately 3 mL were withdrawn from the batch
reactor at each production step and stored until analysis in glass
vials in the dark at room temperature.
2.2. LC-IR reference procedure

Recently published LC-IR methods for the determination of
sugars were adapted [16,17] for the off-line analysis of samples
withdrawn from the production process. For chromatographic
separations a Dionex (Sunnyvale, CA, USA) P680 high perfor-
mance liquid chromatography system, equipped with a Kromasil
100 NH2 column (250�2 mm, 5 mm) was used running linear
acetonitrile:water gradients from 75 to 55% (v/v) of acetonitrile in
15 min, then maintaining the mobile phase constant during
10 min at a flow rate of 0.2 mL min�1. Using a home-made micro
flow cell interface with an optical path of 10 mm, consisting of a
ZnSe and a CaF2 window and an aluminium spacer, on-line
hyphenation to a Bruker IFS 66/v FTIR spectrometer (Ettlingen,
Germany) was achieved. Post-run background correction was
carried out employing cubic smoothing splines (CSS) [18] and
linear calibration lines were established by measuring the corre-
sponding peak areas obtained from the analysis of standards.
For preparation of sugar standard mixtures, different amounts
of pure sugar standards were accurately weighed in 5 mL volu-
metric flasks and dissolved in 2.5 mL of Milli-Q water. Standard
mixtures were sonicated in a JP Selecta ultrasonic water bath
(Barcelona, Spain) during 25 min and filled up to volume with
acetonitrile. For sample preparation, between 200 and 250 mg of
each sample were accurately weighed in a 5 mL volumetric flask
following the same procedure as described for standard solutions.
Sample solutions were centrifuged at 2500 rpm during 15 min to
eliminate un-dissolved particles. Before injection into the chroma-
tographic system, standard and sample solutions were filtered
through 0.22 mm nylon syringe filters.

2.3. ATR-FTIR-partial least squares (PLS) procedure

For ATR spectra acquisition, a dry-air purged in-compartment
DuraSampleIR accessory from Smiths Detection Inc. (Warrigton,
UK) equipped with a nine reflection diamond was installed on a
Bruker IFS 66/v FTIR spectrometer. Spectra were recorded in the
range between 4000 and 600 cm�1, with a spectral resolution of
4 cm�1, averaging 100 scans per spectrum and using a spectrum
of Milli-Q water as a background.

For sample preparation of pure samples, 1.5 mL of Milli-Q water
were added to 200 mg of each sample. In addition to the pure
samples, 31 mixed samples were prepared as binary mixtures of
the pure ones by accurately weighing different amounts of two
samples ranging between 150 and 300 mg and adding 1.5 mL of
water. The dilution step was necessary because of the high viscosity
of samples hindering a proper handling of the aliquots, and enabled
at the same time the preparation of homogeneous mixed samples.
All samples were sonicated in an ultrasonic water bath during
25 min. Sugar concentrations of pure and mixed samples were
calculated employing concentrations determined by the on-line
LC-IR reference procedure and the weighed sample masses.

Triplicate spectra were obtained for each sample and sample
mixture by depositing an aliquot onto the ATR crystal. The means
of the triplicate spectra of each sample and/or sample mixture
were calculated and employed to build up a calibration and a
validation subset for PLS modeling, containing 15 and 26 spectra,
respectively (for details see Table S1 of Suplementary Material).
Table 1 describes the main characteristics of the data sets. Prior to
PLS model calculation, mean centered row vectors resulting from
9-point cubic Savitzky–Golay first or second derivative spectra
were calculated in order to improve PLS calibration. Derivative
spectra are commonly used for pre-processing of spectroscopic
data in order to remove baseline drifts and offsets. They remove
low-frequency features maintaining high-frequency features that
contain the signal of interest without affecting the linear relation-
ship with the chemical concentration [19]. Leave-one-out cross
validation (CV) was employed for the calculation of internal
figures of merit and for the selection of the optimum number of
latent variables (LVs). For outlier detection, the Hotelling T2

statistic and Q residuals were calculated. The Hotelling T2 statistic
is a measure of the variation in each sample within the model
defined as the sum of normalized squared scores. The Q residuals
are the sum of squares of the error matrix of each sample. The Q

residual is a measure of the difference between a sample and its
projection into the latent variables space used to build up the PLS
model and therefore it indicates how well each sample conforms
to the PLS model [19].

A strategy to improve PLS regression model performance is to
select one or more spectral ranges containing useful chemical
information and to eliminate spectral ranges only contributing
noise. A preliminary variable selection was carried out using
interval PLS (iPLS), because it has several intrinsic advantages
over other variable selection methods: (i) the interpretation of the



Table 1
Characteristics of the data sets used for PLS model calculation and validation.

Set Type of samples Number of samples Parameter [mg mL�1] Fructose Glucose Sucrose Maltose Maltotriose

Calibration Pure and mixed samples 10þ5 Mean value 11.6 39.4 6.2 12.7 6.0

Minimum value 1.2 4.9 0.0 5.8 0.0

Maximum value 25.3 74.4 27.8 20.8 11.7

Standard deviation 6.3 17.5 8.9 4.5 3.6

Validation Mixed samples 26 Mean value 12.7 40.7 7.7 13.8 6.6

Minimum value 5.1 18.5 0.0 7.6 0.0

Maximum value 23.0 69.9 22.3 23.1 13.3

Standard deviation 5.5 15.6 8.5 4.4 3.2

Note: for PLS modeling, one sample had to be eliminated from the calibration set of fructose; for validation of the glucose model, one sample had to be eliminated from the

validation set.
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results is straightforward even for inexperienced users as whole
intervals and no single variables are selected, (ii) no high
computation power is necessary for its calculation in contrast to
more sophisticated methods like e.g. genetic algorithms or arti-
ficial neuronal networks and (iii) reproducible results are
achieved in comparison to other variable selection tools like e.g.
uninformative variable elimination (UVE)-PLS. The iPLS variable
selection is based on the calculation of local PLS sub-models of a
user defined number of equidistant variable intervals applying a
range of LVs. Root mean square errors of cross validation
(RMSECV) from local PLS sub-models were compared for variable
selection removing those intervals providing high RMSECVs [20].
In this study, iPLS models were built up using the same pre-
processing and cross validation procedure as for PLS model
calculation and dividing the spectra into 10 independent inter-
vals, using a maximum of 10 latent variables in each interval.

To optimize results obtained from iPLS, PLS models were
calculated using the selected intervals and calculating the Vari-
able Importance in Projection (VIP) scores. Their calculation is
based on estimating the importance of each variable in the
projection used in a PLS model in such a way that a variable with
a VIP score higher than one can be considered important in a
given model [19]. VIP scores allow a straightforward evaluation of
spectral regions with a high contribution to the model even when
derivatives were employed during pre-processing.

2.4. Software and algorithms

The chromatographic system was controlled employing Chro-
meleon 6.40 from Dionex (Sunnyvale, CA, USA) and Opus 6.5 from
Bruker was used for instrumental and measurement control of the
IR spectrometer as well as for data acquisition. Background
correction was carried out using in-house written functions
running in Matlab 7.7.0 from Mathworks (Natick, MA, USA). For
PCA and PLS model calculation and validation, the PLS Toolbox
6.5 from Eigenvector Research Inc. (Wenatchee, WA, USA) was
used and for iPLS model calculation, the iPLS Toolbox was
employed [21], both running in a Matlab environment. Detailed
information on PLS regression and other related parameters
employed in this work have been discussed earlier [22,23].
3. Results and discussion

3.1. Investigation of the production process employing on-line LC-IR

In a previous study analyzing different depilatory products, an
enormous difference between the raw materials declared by the
manufacturers and the sugar concentrations in the final product
was found. As the sugar composition determines product
properties, for product development and quality assurance it is
of interest to control the concentration of all sugars during batch
production. For this reason, the evolution of sugar concentrations
during the process should be monitored.

An existing on-line LC-IR method for the analysis of fructose,
glucose, sucrose and maltose was extended to the analysis of
maltotriose. External calibration lines for all analytes were estab-
lished from the injection of sugar standard mixtures by means of
linear regression of the chromatographic peak areas vs. the
analyte concentration. After applying a background correction
algorithm, traces for fructose, glucose as well as sucrose, maltose
and maltotriose displayed in Fig. S1 (top) could be extracted using
absorbance measurements at 1069, 1080 and 1065 cm�1 and a
single point baseline correction at 1204, 1184 and 1177 cm�1,
respectively. Although retention time shifts due to strongly
varying temperature conditions between injections were
observed, all five analytes under study could be clearly identified
by their IR spectra (data not shown). Table 2 shows the figures of
merit of all five LC-IR calibration lines obtained. The limits of
detection and quantification (LOD and LOQ) as well as the
repeatability were acceptable for the determination of sugars in
depilatories, because the analysis of major compounds that are
usually present at high concentration levels are concerned.

During batch production, ingredients were added at different
stages of the process and the mixture was heated. First, glucose
syrup was moderately heated (steps 1 and 2). Then temperature
was increased and sucrose was added (step 3). After the addition
of citric acid, the mixture was maintained at different tempera-
ture levels (all high temperatures, steps 4 to 8) during several
hours before glucose and glycerol (step 9) and later on perfume
(step 10) were added at moderate temperatures. All samples
withdrawn at different stages of the process were analyzed with
the on-line LC-IR system employing the same conditions as for
standard mixtures. The obtained chromatograms of some samples
considered representative of the process are depicted in Fig. S1.

In Fig. 1 determined sugar concentrations observed during the
production process are shown. It can be seen that initially
fructose, glucose, maltose and maltotriose were detected in
the glucose syrup. Fructose was expected to be observed as the
employed raw material declared to contain fructose. For the
production of glucose syrup, acidic or enzymatic hydrolysis of
starch is employed resulting in dextrose (D-glucose mono-
saccharide), maltose (glucose di-saccharide), maltotriose (glucose
tri-saccharide) and high molecular weight saccharides [24],
explaining the observed sugar concentrations. When sucrose
was added, relative concentrations of other sugars drop due to
dilution effects. Sucrose is hydrolyzed due to heat treatment and
acidic pH [25] and already in the fourth sample step no sucrose
could be detected, whereas increased concentrations for glucose
and fructose were determined. Between steps four and eight little
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Table 3
Correlation coefficients calculated between reference spectra of the different

analytes shown in Fig. 2 in the spectral interval between 1500 and 950 cm�1

Table 2
Figures of merit of the on-line LC-IR determination of sugars.

Analyte Concentration range [mg ml�1] y¼a7Saþ(b7Sb)xa R2 LOD [mg ml�1]b LOQ [mg ml�1]c Repeatability [%]d

a7Sa b7Sb

Fructose 3.4–10.0 �0.0270.02 0.39270.005 0.998 0.8 2.7 6.9

Glucose 3.3–23.1 0.1470.06 0.31770.007 0.995 0.4 1.2 11.5

Sucrose 3.5–10.2 0.0270.06 0.42070.014 0.990 0.5 1.6 5.5

Maltose 3.3–16.3 0.0370.04 0.26470.005 0.996 0.4 1.2 6.7

Maltotriose 3.9–10.3 0.0870.09 0.37170.016 0.990 0.5 1.6 8.9

Note:
a Calibration curve from 6 standard solutions; a and b are the intercept and the slope of the calibration lines.
b Limit of detection established as three times the standard deviation of four independent measurements at a concentration level of 3 mg ml�1 divided by the

analytical sensitivity.
c Limit of quantification established as ten times the standard deviation of four independent measurements at a concentration level of 3 mg ml�1 divided by the

analytical sensitivity.
d Relative standard deviation for four independent measurements carried out at a concentration level of 3 mg ml�1.
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variation in all sugar concentrations was observed. In accordance
with the addition of glucose and glycerol towards the end of the
process, raising glucose concentrations were detected. The con-
centration of maltotriose declines during the process which is
probably due to the conversion into maltose and glucose.
(italic numbers) and between the concentration vectors of the spectra used for PLS

model calibration (bold numbers).

Fructose Glucose Sucrose Maltose Maltotriose

Fructose 1 0.8 0.7 0.8 0.8

Glucose 0.4 1 0.90 0.97 0.97

Sucrose 0.5 0.6 1 0.90 0.90

Maltose 0.1 0.08 0.03 1 0.990

Maltotriose 0.004 0.1 0.03 0.5 1
3.2. Development of a direct ATR-FTIR-PLS method for process

monitoring of sugar concentrations

Fig. 2 shows spectra of standards of five pure analytes
dissolved in water in the region between 1500 and 950 cm�1

where the analytes show typical absorbance bands. A detailed
discussion on mid IR bands of carbohydrates is out of the scope of
this work and can be found elsewhere [26–28]. Briefly, the
studied compounds show strongly overlapping absorption bands
mainly caused by C–O and C–C stretching and C–OH deformation
modes in the depicted region. Additionally, bands in the region
around 3000 cm�1 are observed caused by CH2 and CH3 stretch-
ing vibrations. From Table 3 it can be appreciated that all analytes
under investigation show very similar signals in the region
between 1500 and 950 cm�1. This fact evidences that an accurate
determination of all five investigated analytes requires the use of
multivariate statistical tools since univariate methods are not
powerful enough.
Fig. 3a shows ATR-FTIR spectra of samples withdrawn from 10
different steps of the production process as indicated in the
experimental part and Fig. 3b shows the same spectra after
subtracting the spectrum of the first sample. From the figure it
can be seen that spectra of all samples are highly similar, with
some minor variations in the band around 1050 cm�1, caused by
differences in the carbohydrate composition. Comparing this
figure to results shown by Cascant et al. [16], for samples directly
measured without the addition of water, it can be observed
that similar signals were obtained for the depilatory samples.
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This confirms that water did not cause significant interferences in
the acquired signal as its contribution could be accurately
compensated by using a water spectrum as a background.

Due to the high similarities in the signals of the analytes it is
important to provide calibration spectra with independently
varying carbohydrate concentrations for PLS modeling. The cor-
relation coefficients of the concentration vectors employed for the
calibration set are displayed in Table 3 and are always below or
equal to 0.6.

Fig. S2 displays results obtained from iPLS variable selection
for fructose, glucose, sucrose, maltose and maltotriose. For all five
models, the interval between 1280 and 940 cm�1 gave low
RMSECV. For the majority of the models, also the adjacent region
from 1620 to 1280 cm�1 added useful information reflected in
low RMSECV values. As a rough estimation, both intervals were
employed for PLS modeling of fructose, glucose, sucrose, maltose
and maltotriose. The selection of these regions is in agreement
with typical absorbance bands of carbohydrates as discussed
above. Furthermore, based on the results provided by the iPLS
algorithm, the region around 3000 cm�1 can be excluded from
further calculations, as it is not considered to add useful informa-
tion for PLS modeling (with exception of maltose), although all
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analytes present bands in this region. The results demonstrate,
that iPLS is a valuable tool for straightforward variable selection,
without the need of expert knowledge for the a priori exclusion of
regions like the region around 2100 cm�1, where high noise
levels caused by the limited transparency of the diamond of the
ATR unit are observed.

Employing the variables between 1620 and 940 cm�1 and the
previously selected spectral pre-processing (see Table 4), five PLS
models were calculated and a plot of the VIP scores was obtained
as shown in Fig. 4 using the example of glucose. It can be clearly
observed that mainly variables in the region between 1180 and
960 cm�1 are contributing to the model. Absorbance bands in
sugar spectra in the considered spectral region are attributed to
strongly overlapping C–O and C–C stretching and C–OH deforma-
tion vibrations shown in the inset of Fig. 4. As similar results were
obtained for all analytes, finally the same region could be
employed to build all five models.

3.3. Analytical figures of merit of the developed procedure

Fig. 5 shows the results obtained for the PLS determination of
fructose, glucose, sucrose, maltose and maltotriose. According to
the root-mean-square-errors of cross validation, the optimum
number of latent variables was chosen as indicated in Table 4.
Predicted values of sugar concentrations vs. sugar concentrations
determined using the LC-IR reference method are depicted, along
with the Q residual vs. the Hotelling T2 values. From Fig. 5 it can
be concluded that calibration and validation sample points were
closely distributed near the optimum regression line between
measured and predicted concentrations. The Hotelling T2 values
and Q residuals in the insets of Fig. 5 evidence that no clear
outliers could be identified, as only very few samples fall outside
the 95% confidence limits and both statistics are close to their
optimum values of 100% and 0%, respectively. It has to be
remarked that one sample had to be removed from the calibration
set of fructose and one sample from the validation set of glucose
prior to the calculation and validation of the final PLS models of
those analytes.

The calibration set of sucrose appears to be imbalanced due to
the high number of calibration samples with a zero concentration
caused by the fact that sucrose is only present in the production
process during a very short time period. However, when calculat-
ing a PLS model after eliminating six samples with zero concen-
tration of sucrose, it could be proved that the performance of the
PLS model was not significantly influenced (data not shown).
Hence, the use of the present data set was preferred for assuring a
Table 4
Calibration and prediction parameters of the ATR-FTIR-PLS models developed for the de

of a depilatory production process. Note: the spectral interval used for all models was

Analyte Pre-processing LVsa RMSECVb RMSEPc

[mg mL�1] [mg mL�1]

Fructoseg 2nd Derivative 3 2.81 2.94

Glucoseh 1st Derivative 3 4.06 3.04

Sucrose 1st Derivative 4 0.61 0.65

Maltose 1st Derivative 3 1.59 0.90

Maltotriose 2nd Derivative 4 1.14 0.66

Note:
a LVs: latent variables,
b RMSECV: root mean square error of cross validation,
c RMSEP: root mean square error of prediction,
d CV: cross validation,
e Pred: prediction,
f Cal: calibration,
g Fructose: one sample eliminated from calibration set,
h Glucose: one sample eliminated from validation set.
straightforward application of ATR-FTIR in combination with PLS
calibration as a process analytical tool, using the same calibration
set for the determination of all five considered analytes.

The most important calibration and prediction parameters of
the developed ATR-FTIR-PLS models are summarized in Table 4.
As shown in Table 4 either the first or second derivative was
applied prior to PLS modeling. Derivatives are a commonly used
pre-processing step in PLS model calculations when working with
spectroscopic data, where adjacent variables are inherently
related to each other containing similar correlated signals. They
are a form of high-pass filters used to remove unimportant
baseline signals. A first derivative effectively removes any offset
from the sample and de-emphasizes low-frequency signals
whereas a second derivative, calculated by repeating the process,
will further accentuate high-frequency features. It is important to
remark that the calculation of derivatives does not affect any
linear relationships within the data. The choice between first and
second derivative has to be made in order to achieve optimum
PLS modeling parameters for the calibration data, confirming the
suitability of the chosen pre-processing employing an external
validation set. A first derivative was preferred over a second
derivative, as using the second derivative the noise is accentuated
termination of fructose, glucose, sucrose maltose and maltotriose at different steps

from 1180 to 960 cm�1.

CVdBias PredeBias R2 Calf R2 CVd R2 Prede

[mg mL�1] [mg mL�1]

�0.26 1.44 0.96 0.80 0.82

�0.39 2.00 0.98 0.94 0.98

0.06 �0.16 0.998 0.995 0.996

�0.02 0.02 0.95 0.90 0.96

�0.19 0.16 0.98 0.90 0.97



Fig. 5. Prediction capabilities of the ATR-FTIR-PLS models for the determination of fructose, glucose, sucrose, maltose and maltotriose in samples withdrawn from a

depilatory production process. Insets: (A) Evolution of the root mean square error of calibration (RMSEC) and cross validation (RMSECV) as a function of the number of

latent variables (LVs). (B) Q residuals vs. Hotelling T2 values obtained for each model. Note: blue dashed lines represent the 95% confidence level. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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stronger. Second derivatives were applied only in cases where the
discrimination/resolution enhancement provided by the use of
the first derivative was not sufficient.

Acceptable cross validation and prediction errors below or
equal to 4.06 mg mL�1 of sugar were achieved in all cases. Within
each model similar values for the RMSECV and root-means-
square error or prediction (RMSEP) were obtained, indicating
good model performance. Low cross validation and prediction
bias values, as well as high correlations of determination (R2)
supported the quality of model performance. Only in the case
of fructose, slightly lower R2 values were observed. However,
concerning the application of this method as a process analysis tool,
the overall model performance was considered to be adequate.

Regarding green analytical parameters [29], sample prepara-
tion only requires the use of hundred mg amounts of sample
dissolved in water thus, the use of organic solvents, like acetoni-
trile, is avoided reducing both, the cost and environmental impact
of the analytical procedure. On the other hand direct recording of
ATR spectra without any previous analyte separation improves
the sampling throughput, reduces energy consumption and
avoids the use of LC instrumentation. So, the main strengths of
the green method proposed here consist of the lack of toxic and
dangerous reagents, the reduced amounts of samples required and
the absence of toxic residues together with the high capability of the
procedure for simultaneous monitoring of sugars during different
steps of depilatory production. The opportunity offered by the
proposed methodology involves the green process monitoring
of cosmetics being only limited by the need of a series of samples,
well characterized by a reference chromatographic procedure, to
correctly build the PLS models.

The main drawback of the method is the use of aqueous
solutions of samples for ATR measurements which avoids the
implementation of this method in on-line or in-line process
monitoring. However, in this case at-line measurements present
an advantage in comparison to in-line and non-invasive measure-
ments as the process includes different temperature steps which
can strongly influence the spectral data.
4. Conclusions

For controlling product properties of sugar-based depilatories
it is of utmost importance to determine the sugar composition
during production. Samples were withdrawn from different
stages of the production process and analyzed by a reference
on-line LC-IR laboratory method, thus providing quantitative data
on fructose, glucose, sucrose, maltose and maltotriose at different
steps of the process. This helps gaining insight into the process of
sucrose and maltotriose hydrolysis and provides well character-
ized samples, avoiding unknown interferences, for building the
corresponding ATR-FTIR-PLS models. The careful variable selec-
tion from the ATR-FTIR signals of different samples allowed the
construction of PLS models for the quantification of fructose,
glucose, sucrose, maltose and maltotriose resulting in RMSEP
below or equal to 3.04 mg mL�1.

Comparing the time necessary for sample preparation and
analysis, the chromatographic run-time per sample using the
reference LC-IR method is about 30 min, including a 5 min wait-
ing time to achieve stable conditions within the flow cell interface
after each gradient run. Sample preparation necessary for chro-
matographic analysis took about 40 min, including 25 min for
sonication and 15 min for centrifugation, although it has to be
taken into account that several samples can be prepared at the
same time. In contrast, the measurement time employed using
the proposed ATR-FTIR procedure is about 3 min, including 1 min
for the acquisition of three replicate spectra and approximately
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2 min for cleaning the ATR crystal. Sample preparation is also less
time consuming, as the centrifugation step is not necessary.
Without taking into account the calibration procedure, this leads
to a total saving of time during sample preparation of almost 40%
and provides a ten times faster analysis.

This work can be viewed as a preliminary study for the develop-
ment of at-line ATR-FTIR-PLS methods employing standard process IR
instrumentation for obtaining quantitative multi-analyte information.
Complex sample preparation was avoided and the good performance
of a very simple calibration approach based on the measurement of
only 15 calibration standards could be shown. This technique could
therefore be potentially employed as a fast and environmentally
friendly alternative to chromatographic analysis methods for PAT.
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